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Metastable Fluid Flow Described via a 
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A discrete-velocity Boltzmann model is introduced. It is based on two prin- 
ciples: (i) clusters of particles move in R ~ with seven fixed momenta; (ii) clusters 
may gain or lose particles according to the rules of Becker-D6ring cluster equa- 
tions. The model provides a kinetic representation of evaporation and condensa- 
tion. The model is used to obtain macroscopic fluid equations which are valid 
into tile metastable fluid regime, O<~p <Ps+ O(P~), where a is any positive 
number, p is the inelastic Knudsen number, and Ps is the saturation density. 

KEY W O R D S :  Boltzmann equation: evaporation; condensation; cluster; 
nucleation; shock wave; metastability. 

I N T R O D U C T I O N  

The purpose  of  this p a p e r  is to use a d iscre te-veloci ty  kinet ic  mode l  for a 
gas exhibi t ing  coagu la t ion  and f ragmenta t ion  as a mechan i sm for der iving 
the a p p r o x i m a t e  fluid mechanica l  equa t ions  for i so thermal  me tas t ab le  fluid 
flow. It  is shown tha t  a careful app l i ca t ion  of  Penrose ' s  cons t ruc t ion  of  
metas tab le  s tates  for the space -homogeneous  B e c k e r - D 6 r i n g  cluster  equa-  
t ions 1121 can be used to der ive the mac roscop ic  fluid equa t ions  for small  

Knudsen  number .  
Recall  that  the space -homogeneous  L e b o w i t z - P e n r o s e  vers ion of  the 

Becke r -D6r ing  cluster  equa t ions  ~tl" 131 descr ibe  the dynamics  of  quant i t ies  
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N~(t), ~ = 1, 2,..., which represent the concentration of a-particle clusters or 
droplets in a condensing vapor. The equations are 

where 

dN~( t ) 
dt 

- - -  ~ _ . ( N ) - -  ~%(N), ~ = 2 , 3  .... 

dNl(t)  
Y-~(N)- ~ ~ ( N )  

dl ~=l 

,~%(N) = a~N I(t) N~(t) - b~+ iN ~+ l(t) 

and N" denote the components of the infinite vector N. The equilibrium 
solutions are N~q=3~z ~, where ~=I-[,~=2(a,._l/b,.), ~ = 2 , 3  ..... .~1=1. 
The density p(t) of vapor is given by p ( t )=  ~ a ~ l  ~N~(t) and hence at equi- 
librium the density is given by Peq=~-~a~__! ~ ( N I )  ~t. The case of interest 
here is when this power series has a finite positive radius of convergence Zs, 
for then the maximum equilibrium density is given by Ps = Y~,~=t ~~ ~. 

For plausible assumptions on the kinetic coefficients a~, b~ refs. 1, 2, 
and 14 have shown that for initial data N~(0) with p 0 = Z ~ t  ~N~(0) we 
have p(t)=P0 and: 

(i) IfO<~po<~Ps, then N(t)---~ N~q in X a t  t ~  oz. 

(ii) I f p o > P s ,  then N(t)*-N~q as t ~ .  

Here X is the Banach space given by {N ~, ~ = I , 2  ..... L[NI[<~}, 
][NIl = Z~-__ l ~ [N~[, and " ~ "  denotes "strong" convergence, while "* ' "  
denotes "weak *" convergence. 

We thus see that equilibrium states strongly attract initial data for 
O<~po<~Ps, but for po>Ps  mass conservation [Ip(t)ll=l[po[[ precludes 
strong decay and only the weak decay (ii) is obtained. This result suggests 
the existence of states with Po>Ps which, while not equilibria, possess 
exceptionally long lifetimes in the region p ( t ) = p o > P s .  Such a class of 
solutions was discussed by Penrose) ~2~ He proved that there is indeed a 
class of "metastable" solutions of the Becker-D6ring equations with 
Nl(O)--Zs small and positive which take an exponentially long time to 
decay to their asymptotic steady states [as predicted by (ii) above]. (An 
"exponentially long time" means a time that increases more rapidly than 
any negative power of the given value P o - P s  as P o - P s  ~ 0.) 

A key element of Penrose's construction of the initial data for his 
metastable states is the use of data that yield the "collision" terms on the 
right-hand sides of the Becker-D6ring equations exponentially small in 
N ' - Z s .  Hence a natural guess is that if one imbeds the Becker-D6ring 
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equations into a discrete-velocity Boltzmann structure, a similar construc- 
tion to Penrose's will give a class of "metastable" states for which the colli- 
sion terms are asymptotically small in some sense similar to what Penrose 
has provided. In fact, the model given here provides such states, which are 
termed "approximate Maxwellians," and the smallness of the collision 
terms is shown to occur in terms of the convenient macroscopic variables 
P - P s ,  i.e., the collision terms are exponentially small in P - P s  as 
p--ps~O. 

The existence of such "approximate Maxwellian" metastable states for 
the Boltzmann structure allows the derivation of the macroscopic fluid 
equations even into the region p > Ps. The method used is a variant of the 
Chapman-Enskog expansion and yields the viscous Navier-Stokes equa- 
tions and a relation for the pressure p which are formally valid in the 
region O<~p<~ps+O(lt~) ,  where a is any positive number and It is a 
Knudsen number. (A schematic diagram for the pressure as a function of 
density p for slow flow is given in Fig. 1.) Thus, in the hydrodynamic limit 
as it ---* O+ the domain of validity of the fluid equations contracts to the 
region 0 ~< p ~< Ps. That is, on the mesoscopic time scale of the kinetic equa- 
tions metastability is meaningful and the Navier-Stokes equations govern 
the flow, but on the hydrodynamic time scale obtained as l~--* 0 + the 
Euler equations govern, but only for states p, 0 ~< p ~< Ps. This is another 
way of looking at the decay results (i), (ii) above. 

The results indicate that metastability is a dynamic phenomenon and 
the dynamics of spatially segregated phases (stable vapor and metastable 
vapor) can be studied on the kinetic time scale via the viscous 
Navier-Stokes equations. 

The model itself has been presented in refs. 15 and 16 and is based on 
two simple concepts: 

(i) Individual particles coagulate into clusters and these clusters may 
themselves fragment according to the rules of the Becker-D6ring cluster 
equations. 

(ii) Clusters move with seven fixed momenta. 

Unlike the usual discrete-velocity models of the Boltzmann equation 
such as the Broadwell model, the gas at hand is a gas of clusters with no 
a priori bound on the cluster size. Basic ideas used in the construction of 
the model come from refs. 3 and 8-10. 

The model is also motivated by the paper of Chen et aL (6) which 
derived a lattice gas model for a gas admitting coagulation and fragmenta- 
tion. While lattice gas models are advantageous for machine computation, 
they do not process the analytical simplicity of discrete-velocity models. 

822/83/5-6-18 
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Fig. 1. (a) Fluid dynamic limit: The inelastic Knudsen number is p = 0 and the compressible 
"Euler" equations apply for 0 <~ p <~ Ps, where Ps is the saturation density of the gas. (b) Small 
inelastic Knudsen number it > 0: The compressible viscous "Navier-Stokes" equations apply 
for 0 ~< p < Ps + 0(I~"), where tr is any positive number, i.e., into the supersaturated metastable 
regime. 

This seems particularly important for the goal at hand, which requires 
rather careful mathematical analysis. It is here that the simplicity of the 
model becomes valuable. Further work will provide generalizations to con- 
tinuous velocity and perhaps lattice gas models. 

The paper is organized as follows. Section 2 derives the mathematical 
model. Section 3 provides the relevant information on the kinetic coef- 
ficients and the crucial concept of critical cluster size. Section 4 introduces 
the idea of an approximate Maxwellian which is the distribution function 
capable of describing both stable and metastable fluid states. Section 5 
derives the "Navier-Stokes" equations valid on 0 ~<p < Ps + O(P~), where 

is any positive number, p the inelastic Knudsen number, and Ps the 
saturation density, via a modification of the Chapman-Enskog expansion. 

N o t a t i o n .  (n~) p means the quantity n~ raised to the p th  power; n 
means the tensor whose components are n~, while n = denotes the vector 
whose components are n} for each fixed 0c, ~ = 1, 2 ..... Finally, i, j, k denotes 
the standard set of mutually perpendicular unit vectors in •3. 
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2. THE M A T H E M A T I C A L  MODEL 

We consider a discrete-velocity gas of identical particles each of mass 
m contained in R 3. A point in ~3 is identified with its Euclidean coor- 
dinates (x, y, z). The particles are grouped into clusters possessing 1, 2 ..... 
particles. The clusters move with fixed momenta P , = m c i ,  P 2 = - P I ,  
P3 =mcj, P 4  = - P 3 ,  P5 =rock,  P6 = --Ps, Po = 0. A cluster made up of 
~-particles will be called an ~-cluster. It is clear that an ~-cluster with 
momentum Pj has velocity v~ = Pj/m~. 

As the clusters move, they collide in a binary fashion. Both elastic and 
inelastic collisions are allowed. In terms of the momenta Pi the elastic colli- 
sions will be represented by P~ + P2 = P3 -k- P4 = P5 + P6, while the inelastic 
collisions are defined by PI + P 2 =  Po, P3+ Pa=Po,  P s +  P6 =P0, 
P i + P o = P ;  ( i = 1  ..... 6). Notice that elastic collisions conserve mass, 
momentum, and energy; inelastic collisions conserve mass and momentum, 
but not energy. We denote by n~'(x, y, -, t) the number density of c~-clusters 
with momentum Pj at a point (x, y , - )  at time t >0 ,  i.e., the number of 
clusters in this class per unit volume. 

A collision of an s-cluster with momentum P~ and a fl-cluster with 
momentum Pj which yields a di-cluster with momentum Pk and a 7-cluster 
with momentum P/will  be represented by (n~, n~) --* (n~, n)'). This notation 
allows us to write the allowable elastic collisions as follows. 

1. Mechanical collisions: (n~, n~_) ~ (n~, n~_) (prob. 1/3), (n.~, 17,]) 
(prob. 1/3), (n~,n~) (prob. 1/3), with similar statements for (n.~,n,]), 
(n~-, n~). 

2. Exchange collisions: (a) "head-on" collisions: (hi', n~) ---, (n T, n~) 
(prob. 1/6), (n//, n~_)(prob. 1/6), (n~, n~)(prob.  1/6), (nq, n,])(prob. 1/6), 
(hi, n~) (prob. 1/6), (ng, n~) (prob. 1/6) with similar statements for (n~, n4 p) 
and (n~, n6P). (b) "Angle" collisions: (n~, n~) ~ tJ (n l, n 3) (prob. 1/2), (n~, hi) 
(prob. 1/2), with similar statements for (hi', ng) and (n~, n~). 

We only allow inelastic collisions of the Becker-D6ring type, ~1H3~ i.e., 
where an s-cluster may gain or lose a l-cluster in coagulation or fragmen- 
tation, respectively. The coagulation of a l-cluster with momentum Pi to 
form an (~+  1)-cluster with momentum Pk is represented as (n~ ,n~)~  
(n~§ i), while ~he fragmentation of an (co + 1)-cluster with momentum Pk 
into a 1-cluster with momentum P~ and an c~-cluster with momentum Pj 
will be denoted by (n k~+l) ~ ( n ] ,  n~). With this notation the allowable 
Becker-D6ring inelastic collisions are as follows. 

1. "Head-on" coagulation: (n],n~_-t), (/'~--l,n/), (/]~,n~-I), 
(1~;- 1 "4'), (175', n~- 1), (n ; -  1, n~) ~ (n~). 
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2. "Moving cluster coagulates with rest cluster": (n) ,n~-~) ,  
(n~- ' ,  n~) --+ n~, j = 1, 2 ..... 6. 

3. Reversal of I (fragmentation): (n~)--+ (n I, n_~ - j )  (prob. 1/6), 
(n~'- ' ,n~) (prob. 1/6), (n~,n,~- ')  (prob. 1/6), (n .~- ' ,n  l) (prob. 1/6), 

" I n~)(prob. (n~, n~-  ') (prob. 1/6), (n~- i, n6, ) (prob. 1/6) if oc > 2; (ns) --+ (n,,  
1/3), (n~, n4 ~) (prob. 1/3), (n~, n6 ~) (prob. 1/3). 

4. Reversal of 2 (fragmentation): (n~) --+ (n), n] -~) (prob. 1/2), 
(n~, n~-~) (prob. 1/2), j =  1, 2 ..... 6 if ~ > 2 ;  (n]) --+ (n), n~), j =  1, 2 ..... 6. 

The rate equations governing the motion of clusters are given by the 
transport equations 

at + v j ' V n y = E : ( n ) + l ~ ' ( n ) '  j = 0 , 1 , 2  ..... 6, a = l , 2  .... 

E~(n) = 3  - -  

+ 

+ 

+ 

where 17j+ 6 ~-" FIj 

The calculation of E~ has been given in refs. 9 and 10 according to the rules 
of discrete-velocity kinetic theory, i.e., these terms are proportional to 
collisional cross-sectional areas, the relative velocity of the particles before 
collision, the probability of each admissible collision, and both number 
densities of the colliding particles. 

Clearly E~= 0 ,  ~ = 1  ..... and we record the set of E~ by their 
appropriate formulas: 

~, 4 a=c 
E; (n) = ~ T (n~+ _, n~+ 3 + n~+ 4 n;+ s - 2njn j+ ,  ) 

+ _ --g- \~  fl] (njnj+~ +l(j+_,nj+3+nj+_,nj+ 3 
,6' 4: a 

+ , 7 7 + , , r  5 + - ) J J J J I 

+ c,r eR  . nj - n j  nL , nj+ k j =  1, 3, 5 
f l ~ a  "- k = 2  k = 2  

4 a=c 
( 1 7 ; + , n ; +  2 + I'l;+ ~17;+4-- 2n ~. ,n~) 

. j - -  J O~ 

L ca'l* (1 + 1 ~ 07;_ nf  + n;+, nf+, + nf+, n;+ 2 

'7;+ 31l)8+4 + 1,)-'q+ 3 H ; + 4  - -  5/ '/;/ ' /jfl 1 ) 

i f, i i } �9 f l  c~r~,#R~l:~ 17 I l j+k--II  j 17j+ k , j = 2 , 4 ,  6 
f l ~ t  ~- k = l  k = l  

in the above formulas. 
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Here a=p and cRop denote the collisional cross-sectional area and 
magnitude of relative velocities in a (n~, n~) collision, respectively. An 
estimate of a=a is easily obtained by noting that it is proportional to 
(r= + r/j)-', with r=, r/~ the radii of ~- and fl-clusters, respectively. Since the 
volume of an 0c-cluster is .xnou4 .31, the radius of a spherical m-cluster is r~oc I/s 
and hence a=p is proportional to r~(~ ~/3 +fl1/3)2. To compute Rap we note 
that the velocity of an n~ cluster is Pj/m~ and that of an n~ cluster 
is Pk/mfl. Hence R=/j=(1/0c+ 1/fl) for "head-on" collisions and R=a= 
(1/0c2+ 1/fl'-) ~/'- for collisions at a right angle. 

The inelastic collision terms I~ are computed according to the rules of 
proportionality to the probability of each admissible collision and the 
number densities of coagulating or fragmenting clusters. We then see that, 
according to our list of inelastic collisions, I~(n) satisfy the following 
relations. 

For 2 ~< ~: 

C(n)  = o.j " ) " a - '  , o  " U " g -  J a=_l. 1 +(1 --d=,)a=_l.  1 . bj~j  

_~(  f n j , j + l i 1 ~ , ~ l  j 0 ~ 1 
- - ~  a. I " j  " j  + 1 - -  a a]I I1j 1I 0 

I j =+, , 0 ~+,), j = 1 , 3 , 5  +~b:~+jnj + gb:~+ 111 o 

I~(n)= oj =-,  (1cr lnO + ( 1 - - d = 2 ) a ~ ' ~  - b=nj j = 

I , - , J .J - - l r*aml  _ _ a J .  Ol~=m 1 
"{- ~ --L.*=, 1 *tj * , j _  1 ~r I " j  " 0  

1 j l l ~ + l  1 0 = + 1  + 2b=+, +gb=+ln  o ), j = 2 , 4 ,  6 

= - b ~ l l  O--I-a~" 1,1 a ~ _ l , i  3 I~(n) o a 9 1  112 - 11111+ 4 , 3  l , l ~ - - l l l l  

..1_ a = _  1, 1/,/6 6 , 5  a - l n ~ . . j _ ( l _ ( ~ a 2 ) ( a l : l  1 1 w-- I n211a- -  1 

4 , 3  111111 - -1  6 , 5  11112~ -- 1) -'1- t ' /1. = _ I "l- a 1, a _  1 

( o 
+ --n;  y~ o~ a=:~.n, + 4 ~=+,n k // 

k = l  k = l  

For oc = 1 :. 

~ I j . O  l fl C ( . ) =  - <./;',,',r 
p = l  

/1  j , b~ - ( l + a p , ) ~ b , + p n j + P + - - ~  o jj j = 1 , 3 , 5  



1074 S lemrod  

i o  o p I ) ( n ) = -  5aJa+'n)n~_ - ' [ - a l ' f l l I j l ' l  0 
p = l  [ 1 ,#  1 , 

I+p n~+p j = 2 , 4 ,  6 --(1 +gpl)  bJ+lln j + 

~ f  6 l 6 ] . j k  . .  1 + / 3 ~  
I lo(n)=--  /.2 ]n~ Z a0"kLt~nk p - ~ ( I + 6 p ' )  Z ~,+p"k J" 

f l = l  L k = l  k = l  

The a,, az  k and bot+~ j are positive kinetic rate coefficients for coagulation 
and fragmentation, respectively. The aot, aJ" k satisfy the principle of detailed 
balance j ,  k __ n J, k - -  n k ,  j a~,,q--..#,ot--~.#. 

Here di 0. denotes the Kronecker delta (~ j=  1, i=j; 6o.=0, i#j) .  It 
enters the formulas to prevent double counting of collisions when ct = 2. 

It is a straightforward exercise to show 

6 

E s ; = 0 ,  .... 
j = l  

E~-E~+ ,  =0,  j = 1 , 3 , 5  
o t = l  

~ t~ l  j = 0  

I2--1~+~ =0,  j = 1 , 3 , 5  
~ = 1  

Next define the quantity 

6 6 
Jot(n)=n; F. _ k . O . . ,  Uot, lnk-t-(1--(~otl) nl 2 a,.k'~ Ilk ~ 

k = l  k = l  

+ ( 1  - -  ~ o t l )  Y .  . .k, k + 1 . . . . .  1 ~l~, I t t k C t k +  I 
k = 1 , 3 . 5  

6 
y .  .k, k + l ot 1 __ ].~k rTot+l  

blot, 1 H k H k + l  2 v e ~ + l " k  + 
k = 2 , 4 . 6  k = 0  

It then follows that 

for I~<~ 

E zT=sot-,-s., 
j = 0  

2<~ 
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Let us define 

where /~ is a typical value of the density 6 o~ Y'-~ = 0 Y ~  = ,  e n j ,  w i t h  x = .?L, 
y = 37L, z = ZL, and ct = fL, .where L is a typical macroscopic length. Hence 
fi2, ,g, 37, 72 are dimensionless quantities. Then, for example, we see that 

Off]' 10fi~ L 
t : ( E ; + / ] ' )  

Of o~ 0.'~ cp 

Hence we have 

aft; l o f t ;  L I=  
+~-O--f=Lr~p(E;)+c~ , 

where we d e f i n e / ~  as El' with c = 1, n~ replaced by n- i ,  and r, = 1 in the 
definition of a=#. Next set e =  1 / L r ~ ,  which is the dimensionless elastic 
Knudsen number. 

I]' possesses both coagulation and fragmentation coefficients. It is 
natural to assume that the coagulation coefficients a=.pJ" ~ scale in a similar 
way to the elastic collision coefficients, i.e., they are proportional to cry. By 
consistency we then assume that the fragmentation coefficients b{+, are 
proportional to cr~/~. 

Thus, setting 

j, k - - j , k  
ar 1 = c r l a ~  1 - 

i t  

2 - - j  bJ+i =cr ipb~+,  - 

where It is the dimensionless inelastic Knudsen number, and [~ is I]' with 
-= j ,  k " n~ replaced by nj ,  a=. 1, b~+~ replaced by the above definitions, we see that 

o,+; + o,+; E ; + / ;  
Of O.~c ~ I~ 

Finally, we drop the overbars and we have derived the system 

On E .  = I= = 
=. Vn~ = __.z + J_ (2.1) 

O--T + Vj e # 

e . .  

V ; = ~ ,  j = l  ..... 6 (2.2) 

e l = i ,  e3=j ,  e s = k ,  ej+, = - e j ,  j = l ,  3,5 (2.3) 
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Next define 

6 

N " -  E n ~  
j = 0  

N ~ u  ~ _ 1 (n~  - -  n~_) 
O~ 

1 
N~v ~ - -  (n~- n]) 

N %  '~' _ 1 (n~  - -  n~)  
O( 

u ~ ~ (u  s, v ~, w ~) 

p - ~ ocN ~ 

p w -  ~ aN%v ~= ~ (n~--n~) 

u = (u, v, w) 

Then the equations for transport of a-clusters are 

0 J~-  I - J~ 
(N~) + div(N~u ~) = 

/t 
2~<e 

0 Nl  + d i v ( N l u l ) =  - J i -  Z~'= i J~ 
0t p 

the equation for conservation of mass is 

0 
p + div(p u) = 0 

(2.4) 

(2.5) 

(2.6) 
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and the equations for conservation of linear momentum are 

c3 + a _  ~ ~ (n ] '+n~)=0  
at (pu) Ox=~ 

0 0 ~-' ~ l ( n ~ + n :  ) 
05 (pv) + ~ Z,= _ = 

0 (2.7) 

0t 0 ~ 0 ~ !  (pw) + 7",= (n~ + n~) = 0 

[We note that (2.4) is derived by Friedlander ~7~ from the "general dynamic 
equation for the continuous distribution function." Friedlander's presenta- 
tion possesses mass but not momentum conservation, and coagulation but 
not fragmentation kinetics. See also ref. 4 for a related approach.] 

If we define the macroscopic symmetric tensor/7 by 

/7,,.., = - pu ~- + y,  ! (n~ + n D  

/7,,,. = - pv'- + y, _1 (n~ + n,]) 

H-_- = - - p w  2 + ~ 1 (n~ + n~) 
0c 

/7-"3' = --  flUV 

/ T x :  = - -  p u w  

/ 7 , , . _  = - -  p v w  

then the conservation of linear momentum may be expressed in the familiar 
form 

0 
0t (pu) + div(p u | u + I-I) = 0 (2.8) 

The hydrodynamic pressure is p = .~ trace l-I, so that 

p -  - p  lul'-+ ~ Z n 
e = l  j = l  

We define the elastic and inelastic Maxwellian states as to those n for 
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which all E ~ = 0  and I ~ = 0 ,  respectively. The  elastic Maxwel l ian states 
have been compu ted  in ref. 10, p. 66, and have the form 

n ~ = (0, e el, e- , . i ,  e":, e-,.2, e,3, e-,'3) C ~ 

+ ( h i ,  0, 0, 0, 0, 0, 0), ~ = 1 , 2  .... (2.9) 

where the pa ramete r s  C'>O, c~, c2, c3 m a y  depend on (x, y, z, t). Not ice  
since n~ does not  enter  the elastic collision terms, it is as yet unconstrained.  
We define e = (cl ,  cz, c3). 

The  inelastic Maxwell ians  are not  so readily identified. Wha t  is ra ther  
s t ra ightforward to do is to obta in  the inelastic Maxwel l ians  which are also 
elastic Maxwellians.  For  convenience we call such states s imply Maxwell ians.  

Fo r  simplicity we will only consider  the case 

a~)*=ap, j , k = 0 ,  1 ..... 6, l~<fl  

b~=bp, j = l  ..... 6, 2<~fl 

b~= 3bp, 2 <~fl 

The reason for the value 3 in last a s sumpt ion  becomes clear in the com-  
puta t ion  of the inelastic Maxwell ians.  In fact, any positive cons tant  would 
suffice with a cor responding  change in our  formulas.  

As shown in Appendix  A, the Maxwellian states are given by 

n ~ = (1, e% e -~', e ' ,  e-'- ,  e c3, e -'3) Q~(n~) ~ (2.10) 

where 

Q = 2 ~ _ ~ a a _ l " ' a l  - or = 2 ,  3 , . . . ;  Ql -- 1 ( 2 . 1 1  ) 
b ~ . . . b 2  ' 

Next  define the series 

~ ( z )  - ~ ockQa(z) ~, k = - 1, 0, 1 (2.12) 
t x = l  

We then see that  on Maxwell ians  the four macroscop ic  variables p, pu, pv, 
pw can be related to the four Maxwel l ian pa rame te r  cl ,  c2, c3, n~ by the 
relations 

p = ( 1 + 2 cosh cl + 2 cosh c2 + 2 cosh c 3) ~ ( n ~ )  

pu = 2 sinh cl ~0(n0 I ) 

pv = 2 sinh c2 .~o(n~) (2.13) 

pw = 2 sinh c3 ~o(no I ) 
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We also see that the hydrostatic pressure p satisfies 

p + .~p [u[ 2 = i(cosh cl +cosh  c 2 + cosh c3) ~_l(no t) 

1079 

(2.14) 

3. KINETIC COEFFICIENTS AND CRITICAL CLUSTERS 

So far we have not made any restrictions beyond positivity on the 
kinetic coefficients ap, bp. Following Penrose, t ~2) we now make the following 
physically motivated assumptions: 

(i) There exist positive constants A, A', K, with 0 < x <  1, such that 

A'<ap<Afl ~ (fl = 1, 2,...) (3.1) 

(ii) We have 

lim bp + ~ = p ~ ' ~  1 (3.2) 

(iii) The sequence bp/ap is monotonic decreasing, with a positive 
limit which we call z s, i.e., 

bp+l 
~< b-d ( p = 2 ,  3,...) (3.3) 

a# + 1 aft 

lim bP=zs>O (3.4) 

(iv) The sequence bp/aa converges to its limit like a negative power 
offl,  but not as rapidly as fl-~; that is, there exist positive constants 7, 7', 
G, G' satisfying 

0 < 7 < 1 ,  0 < 7 '  

such that 

zsexp( Gfl -~') < ~--~Pap< Zsexp( G'fl-~") (3.5) 

One consequence of the assumptions (i)-(iv) is that the series 

• o~Q=(z) = (3.6) 
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has by (3.2), (3.4) the positive radius of convergence 

lim bp+l _ 
p - ~  2ap- - - I s  

Moreover, (3.5) and Theorem2 of ref. 10 imply that the series (3.6) 
actually converges when Z=Zs. Its sum will be denoted by p~: 

P's = ~Q~("s) < m (3.7) 
a = l  

We observe that on Maxwellians the density is well defined and given 
by 

p = ( 1 + 2 cosh cl + 2 cosh c2 + 2 cosh e 3) ~(n~)  

when 0 ~< no ~ ~< Zs. The maximum value of this quantity for fixed e is then 

Ps = ( 1 + 2 cosh ct + 2 cosh c2 + 2 cosh c3) p~ (3.8) 

This sum is usually interpreted as the density of  saturated vapor and for 
convenience we will not subsequently denote its dependence on e. For  
0 <~ no <~ Zs, pu and p are also well defined. On macroscopic equilibrium 
Maxwellians the hydrostatic pressure satisfies 

p = 2"~St l(nol), O<~n~<~Zs (3.9) 

From the chain rule and the positivity of the kinetic coefficients dp/dp = 
(dp/dn~)/(dp/dn' o) we trivially observe that p is a monotone increasing 
function of p. Of course we can eliminate n~ from (3.8), (3.9) to find p 
explicitly as a function of p in terms of a power series in p: 

1 3 I 2 p = 2 [ ~ p - ~ . ~ Q 2 p  + . , . ]  (3.10) 

which is valid for O<~p<~ps, el = c 2 = c 3 = 0 .  
For fixed z > 0 one could define the critical cluster size ~* as that value 

of = that minimizes the quantity Q~z ~, i.e., for a Maxwellian state given by 
(2.10) we will have 

n~." ~< n],  fl ~ c~* ( 3.11 ) 

where 0 ~<j~<6. For  computational convenience, however, we follow 
Penrose c121 and define the critical cluster size ~* as that value of ~ that 
minimizes the quantity a~ Q~(z) ~, i.e., for a Maxwellian state given by (2.10) 
we have 

a~.nj .,~a/jnj , f14=~* (3.12) 
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where 0 ~< j ~< 6. We then readily see that a~ Q~z  ~ is monotonically decreasing 
in ~ for z fixed when 

a~,Q~(z) ~' <~a~,_, Q~,_ , (z)  ~ -  ' 

or equivalently 

2a_2 a~ �9 �9 �9 a I as ' " ' al (z)~- 1 b~, b, ( z )~<2~-3  - I  
_ b~_t .b2 

_ ~  1 _ c t  that is, those ~ for which _ .~_b~/a~ .  On the other hand, a~Q~ ,  will be 
monotonically increasing in ct for z fixed for those ~ for which 

a~ + ~ Q~ + ~ z ~ + 1 >~ a~ Q~z ~ 

i /a~+ Hence, since b~/a~ is monotone i.e., those ~ for which z>~_~b~+~ l- 
decreasing by (iii), we see for ~* that 

l b~ .+j  < ~ z < ~  b~,. (3.13) 
2 a ~ .  + l gl~. 

we have a ~ Q , z  ~ decreasing for 1 ~<~<0~*, a~Q~z  ~ increasing for a * < ~ .  
For fixed z the ~* satisfying (3.13) thus defines the critical cluster size (in 
the sense of Penrose). We take b~ = oz to take care of the case when 
z > b2/2a2. Since for 0 < z  < Zs the ratio test tells us that ~ * =  ~ ,  we know 
that as z "~ z s ,  o~* ~ ~ .  One may think of the cluster with ~ = ~* as a con- 
densation nucleus from which larger supersaturated vapor  phase clusters 
form. Of  course this computat ion only makes sense on Maxwellians, but it 
allows us to identify clusters with 1 ~< ct < ~* as being vapor  clusters and 
clusters with ~*~<ct as being supersaturated vapor  clusters. In particular 
the above designation allows us to quantify the supersaturated vapor  and 
vapor  components of our gas. 

We also note that along elastic Maxwellians an H-theorem can be 
proved. This is given in Appendix B. 

4. APPROXIMATE MAXWELLIANS 

In Section 2 we defined a Maxwellian state n = ( l ~ )  as an elastic 
Maxwellian which is also an inelastic Maxwellian, i.e., a solution to (i) 
E ~ ( n ) = 0 ,  l~<~t, (ii) I~ (n )= 0 ,  l~<ct, (iii) 0 = J ~ _ l ( n ) - J ~ ( n ) ,  2 < ~ a < c ~ ,  

and (iv) 0 = - J ~ ( n ) - Z ~ , ~  J~(n). As noted in ref. 12, nucleation theory 
tends to regard J~(n) taking on a common m-independent value as more 
sensible thermodynamic equilibrium in the space-homogeneous case. For 
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example, such a state, if it was also an elastic Maxwellian, would satisfy (i), 
(iii). Leaving aside for a moment condition (ii), we see that the classical 
theory cannot satisfy (iv), which followed from conservation of mass. 
Hence we can either disregard mass conservation, which seems unphysical, 
or introduce a new idea suggested by Penrose's theory and define an 
approximate Maxwellian state. An approximate Maxwellian state will 
satisfy (i) exactly, but (ii)-(iv) will be satisfied approximately when 
p (n )>ps  and exactly when O<~p(n)<~ps. [Notice since (i) is satisfied 
exactly, the parameter c is determined by virtue of n being a fixed elastic 
Maxwellian.] Thus, for unsaturated and saturated states approximate 
Maxwellians will be true Maxwellians. The importance of  approximate 
Maxwellians is that they define metastable states for Ps < P. 

Before giving a precise definition of approximate Maxwellian, we 
recall some terminology used by PenroseJlZ~ 

D e f i n i t i o n  4.1. Let q(z) represent any quantity depending on z. 
Then "q(z) exponentially small in (Z -Zs ) "  means for all positive m we 
have q (z )=  O ( z - z s ) " ,  i.e., q(z ) / (Z-Zs)"  is bounded as z ~ Zs. 

The expression "q(z) is at most algebraically large in ( z - z s ) "  means 
for some positive m we have q(z)= O ( z - z s ) - " ' .  

We can now define an approximate Maxwellian. 

Def in i t ion 4.2. An approxhnate Maxwellian n is (i) an elastic 
Maxwellian with associated density p(n) so that (ii) I~(n), l~<ct, (iii) 
J=_ t (n ) - J= (n ) ,  2~<ct, (iv) Jl(n)+~=~-_ I J=(n) are identically zero when 
0 ~<p(n)<~Ps and exponentially small in p ( n ) - P s  as p(n) "~ Ps. Further- 
more, J=(n)=0,  1 ~<ar O<~p(n)<~ps. 

For p >Ps the approximate Maxwellian states are defined as the 
metastable states. Again recall that since n is a fixed elastic Maxwellian, c 
is fixed for p(n) and Ps. 

Approximate Maxwellians have now been defined. The next step is to 
construct such states. This is done in the following lemmas and theorem. 

Lemma 4.3. Set 

J(z) = + ~= 2 a=Q~(z) ~ + i 

f l ( z ) = z  

�9 f=(z)=Q=(z)=J(z){t~==apQtj(z)/~+l }, E > E  S 
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We now follow Penrose (12) and use his concept of a space-homogeneous 
metastable equilibrium as the basis for our candidate for an approximate 
Maxwellian. Specifically we set 

~ O~(z) ~, 1<~o~, O<~z<~zs 

g~(z)= ~f~(z) ,  ~<~o~*, z > z  s (4.1) 
/ 

[,Q~(zs) ~, cr Z > Z s  

where co* (which depends on z) is the critical cluster size defined in 
Section 3. 

We now state the main result of this section. 

Theorem 4.4. The state 

m = = ( 1 ,  e a', e -a' ,  e a'-, e -a'-, e '6, e - '6  ) g=(m~)  ( 4 . 2 )  

is an approximate Maxwellian. 

The proof will be based on a lemma and theorem of Penrose ~L') and 
some additional lemmas. It is given in Appendic C. 

5. THE C H A P M A N - E N S K O G  EXPANSION 

In this section we perform the Chapman-Enskog expansion to obtain 
the fluid dynamic approximation to the kinetic equations for/l small. The 
presentation follows the formulation given in the paper of Chen et al. ~5~ 
The computation will show that p, p u satisfy the "Navier-Stokes"-like 
system 

Pt + div(pu) = 0 (5.1) 

O(pu) 0 ~'- ~+m~ 
+~.~. ~ _ m l  - = O ( l t )  ( 5 . 2 )  

Ot 
= 1  

- ( 5 . 3 )  

- = 1  {X 

O(pw)+ 0 ~ m~+m~ O(/L) (5.4) = 

where fi~(p, pu) is the approximate Maxwellian given in Theorem 4.4 
expressed in terms of the macroscopic quantities p, p u. The "Navier- 



1084 Slemrod 

Stokes"-like system (5.1)-(5.4) will be valid into the saturated regime as 
long as 0 <~ p ~ Ps + O(/t~), where a is any positive constant. For  slow flow 
(5.2)-(5.4) will deliver an equation of state schematically suggested by 
Fig. 1. In the fluid mechanical limit p---, 0 + the domain of validity of 
(5.1)-(5.4) collapses to the states for which 0 <~p <<,Ps. 

The expansion procedure is a bit tedious, but important, since it shows 
the crucial role of the approximate Maxwellian. We give it below. 

Assume that we have let e---,0+ in (2.1), so that the e-limit micro- 
scopic state n is an elastic Maxwellian and satisfies (2.5)-(2.8). Next we 
assume the n~ can be expressed in terms of the macroscopic variables p, p u, 
where u is the velocity vector (u, v, w), i.e., n~.=K~.(p, pu). We write the 
macroscopic conservation laws of mass and momentum (2.7), (2.8) as 

---Pt + div(pu) = 0  (5.5) 

~- -e~x = 0  (5.6) 
~ t = l  

O(pv)+O ~ ( K ~ + K ~ ) = O  (5.7) 
Ot Oy == l 

aS + ~  =0 (5.8) 
~ x = l  

plus the kinetic relations 

0 K~ J~- I - J~ 
- -  + div(K=u ") - (5.9) 
Ot /t 

0 K~ r - J t - ~ = ~ l  J= (5.10) 
Ot p 

OK~ = --I~ (5.11) 
Ot p 

where K s - x7'6 K ~ u = v =, - ~ j = o  j , u =  (u, v, w), = ( u L  w=). 
Since K. ~ depend on x, y, z, t through p, pu, we can use the chain rule 

.I 
to compute (5.9), (5.10) via (5.5)-(5.8): 
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Op ~,= 1 

O ( p v )  ~ = 1 

,: ,)+ 
"J~_ l(n) -- J~(n) 

2~<~ ) 

= (5.12) 
- J , ( n )  - ~=~'-= ~ J~, (n)  

, ~ 1  
/.t 

o t ~ l  

0(pv) ~=~ 

0(pw) ~=, 

= I ~ ( n )  ( 5 . 1 3 )  
/l 

Now we expand K~(p, pu) in an asymptotic expansion in l~: 

K~ (p, pu) = m~(p, pu) +itv~ i (p, pu) + ... (5.14) 

where m is the approximate Maxwellian given by (4.2). It is easy to see 
that m can be expressed in the macroscopic quantities p, pu: we just set 

p = ( l + 2 c o s h d l + 2 c o s h d z + 2 c o s h d . ~ )  ~ , 1 c~g (m o) (5.15) 
~ = 1  

pu = 2 sinh dl ~ g~(m~) (5.16) 

pv=2sinhd2 ~ g~(m~) (5.17) 
c x ~ l  

p w = 2  sinh d 3 ~, g~'(m~) (5.18) 

822/83/5-6-19 
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Equat ions  (5.16)-(5.18) define d~, d_,, d3 in terms of pu,  mo ~. Subst i tut ion 
of  these relations into (5.15) defines mo ~ in terms of  p, pu. Hence  we obta in  
the functional relations 

a, = d,(p, pu),  ,n~ = ~ho~(p, pu), i =  I, 2, 3 (5.19) 

and also 

m ~ = [ 1 + 2 cosh d~(p, pu)  + 2 cosh d2(p, pu)  + 2 cosh ds(p ,  p u ) ]  

x g~(rfi~(p, pu))  

where m s -  x-6 - -  z . . j  = o my. 
O u r  goal now is to find wy(p,  pu )  by subst i tut ing the expansion (5.14) 

into (5.12), (5.13) and match ing  terms of  order  one. 
First we must  determine the s tructure of  wy. Since n is an elastic 

Maxwell ian,  it satisfies (2.9), while m satisfies (4.2). Hence  

n = (n],  C~e ''', C~e - ' ' ,  C~e '~-, C~e -'~-, C~e "3, C~e - ~  (5.20) 

- a l n l  1 x m = ( 1, e at, e - a J  ea,_, e-a,_, ea~, e - , 6 )  g t o/ (5.21) 

with 

n~ = g~ +Irk  ~ + O(p2), 

Then we see 

and with 

we have 

C ~' = g~ + lth ~ + O(lt  2), 

i =  1 ,2 ,3 ,  ~>~1 

c i = d i +l t l i  + O(p  2) 

C~e ' '=  g~e a~ + Itea~(h ~ + g~li) + O(tl  2) 

C~e -"~ = f ' e  -a~ + l t e  -a,( h ~ _ g~l~) + O(lt  2) 

w = (k ~, ea'(h ~ + g " l l  ), e - a ' ( h  ~' -g~ ' l l  ), ea"(h ~ + g~l_,), 

e - '~ (h~ -g~ l , - ) ,  eaS( h~ + g~ls), e - ' 6 ( h : ' -  g~ls) ) 

= 2(/l sinh d t + l 2 sinh d z + 1 s sinh d3) 

C~Sc = g = S  d + lt(h~'Sa + g ~ )  + O(it  z) 

Sc = 2(cosh c~ + cosh c2 + cosh c 3) 

Sd = 2(cosh d~ + cosh d2 + cosh d3) 

(5.22) 

(5.23) 
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Next we recall that along an elastic Maxwellian n 

J~(n) = Sca=n~C l + Sr 1 - J = l )  C=a~nio + (6 - 36~1) a~,CtC ~ 

while 

J ~ ( m )  = Sda~,g~'g I + Sd( 1 - -  6~,1) g:'a~,g I + (6 --  33~t)  a~, gtg~, 

--b=+lg=+lSd-- 3b~+lg ~+l 

which when combined with (5.23) yields 

where 

J = ( n ) -  J=(m) 
=JJ~(m)+O( l t ) ,  o~>~1 

It 

3J~(m) = Sdaa( g~'h I + k=g I ) + ~a~(gagl) 

+ Sda~(l -- ~=l)(h~g I +g~'h I ) + .~,a=( 1 -3~ t ) (g~g  I ) 

+ (6--3J~1) a~(hlg~+h~g l ) - b ~ + l S d  h~+~ 

- - b , + l ~ g  = + l - 3 b ~ + l k  "+j.  

We then see that 

J=_ l(n) -- J~,(n) 

P 

- - J l ( n ) - Z ~ = l  J~(n) 

and 

It 

J=_ , (m)  - J=(m) 

It 
+6J=_ rim) - 6J~(m) 

1087 

(5.24) 

+ O(p), ~>~2 (5.25) 

_ - - J l (m )  -- ~ : =  j J=(m) _ 6 j l (m)  
It 

- L JJ=(m) + O(p). (5.26) 
~ = 1  

Similarly-we know that along an elastic Maxwellian n and for ~/> 2 

1 C~+lSc I~(n) = -n~(CISca~, + 3b~) + ( 6 - 3 6 = 2 )  a~_l C~-JC I + ~_b=+l 

while for an approximate Maxwellian m 

- g o t +  I~(m) = - -g~ ' (g lSda~+3b~)+(6- -3J~ , z )a=_lg~- t+lb~+l  tSd 
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We again use (5.23) to find 

I~(n) - / ~ ( m )  = c~I~(m) + O(lt) 
/t 

where 

JI~(m) = - S d a~,( g~'h i + k~g, ) _ Na~( g~g i ) _ 3b~ k ~ 
a ~ - l h l  l l "  1 ~ 1 K' + ( 6 - 3 6 0 2 )  :,-l(g +h~-lgl)+~-~'~+ln ~'d 

_ .~r + I 

For e = 1 we note that 

and hence 

/Io(n) = -- S< ~] 
# = 1  

I o l ( m ) = - S  d ~. 
/ J = l  

{6notapCa-  3(1 + dip~) bt +/jC ~+t~} 

where 

{ 6gla/j g/J- 3(1 + 6p l) b, +p g,  +/~} 

(5.27) 

c~/~(m) = - S d ~, 
h ' = l  

where 

{ 6ap(gnk 1 + k/Jg l) - 3( 1 + 6pl) bi +ph i +P} 

- ~  ~" {6a/jgPg ' - 3 ( l  +Jlsi)bt+lsg '+/j} 
p = l  

Notice 6J,(m),  f ib (m)  are linear in h ~, k ", .~. 
Now expand the left-hand sides of (5.12), (5.13) about m to see that  

1.h.s.(5.12) - r ~ + O(p) 

#.~ __" Om~ )-O~COm= ( C30x ~" m~ +m~_) 

Co(pw) -~ J ~ m, m 2 

-I-~-fy - -  - I - ~ \  o~ J'  ~ > 1  (5.29) 

l~(n) -- l~(m) _ J l~(m) + O(p) (5.28) 
P 
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m~' = ( l + 2 cosh d~ + 2 cosh d2 + 2 cosh d3) g~(m~), o~ >~1 

m = ( 1, e a', e -,11, ea,_, e -a,., e,6, e -a3) g~(m~) 

tool = rfi~(p, p u), d i=  d,(p, pu), i = I , 2 , 3  

Notice that r ~ is a function of p, pu, and their first derivatives in x, y, z. 
Similarly we find 

1.h.s.(5.13) = s" + O(/t) 

where 

S ~ --" ag~ (div(pu)) - - 
Op O(pu) \Ox ~=~ 

Og ~ O 

0(pw) ~ = l 0c J '  ~ >~ 1 
(5.30) 

Again note that s ~ is a function of p, p u, and their first derivatives in 
. \ ' ,  y ,  Z .  

We now insert (5.25)-(5.30) into (5.12), (5.13) to find 

r" _ J a _  l ( m )  - J~(m)  + Oj~_ l ( m )  - 6J~(m)  + O(l l ) ,  
/l 

~z~>2 (5.31) 

mJl~m~ m ~ l  J~m ~ 
r ' -  6 J , ( m ) - -  ~ 6J~(m)+O( ,u)  (5.32) 

l l ~ =  1 

s ~ _  I~( m ) 
- - - + 6 I ~ ( m ) + O ( l t ) ,  c~>~l (5.33) 

It 

It is at this pohTt where m be#~g an approximate Maxwell ian comes to 
the fore. Simply put, since m is an approximate Maxwellian, then (i) for 
0 <~ p <~ Ps,  all the numerators in the O(1/p) terms of (5.31)-(5.33) are iden- 
tically zero, and (ii) for ps<~p, the numerators in the O(1/lt) terms of 
(5.27)-(5.29) are uniformly in ~ exponentially small in p - P s .  

But (ii) means that the numerators are bounded by c o n s t - ( p - p s )  j 
for all positive j if 0 <~ p - Ps <~ 0 for some fixed 0 > 0 sufficiently small. 

So if we enforce the restriction 

p - p s < ~ C o n s t  .(It)  a for any t r>0 ,  c o n s t > 0  (5.34) 
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we will have p -  Ps <~ 0 when p is sufficiently small and the numerators in 
the O(I/p) terms will be smaller than any positive integer order of/1. 

111 summary, if (5.34) holds, the O(1//1) terms can be neglected #l 
(5.31)-(5.33) even though m is not a true Maxwellian. 

We now equate order-one terms in (5.31)-(5.33) to obtain 

r~=~J~_l(m)-6J~(m),  ~>_-2 (5.35) 

I "1= - 6 J l ( m ) - -  ~ 6J~(m) (5.36) 
~t=l 

s~=6I~(m), ~>_- 1 (5.37) 

which is an infinite system of linear algebraic equations in ~ ,  (h ~, kS), 
1~<~. 

We solve (5.35) recursively to find 

~J~(m)=JJ l (m)-  ~ r j, 0~>2 (5.38) 
j = l  

Equation (5.38) suggests setting 

&/~(m)= ~ r j, ~>~ 1 (5.39) 
j = a + l  

which yields 

OJj(m) = ~ r j (5.40) 
j = 2  

Hence (5.34) is satisfied. Substitution of (5.39), (5.40) yields 

r ~ = - - ~  rJ-- ~ ~ r j (5.41) 
j = 2  ~=1  j = a + l  

which is equivalent to 

~ 0 t r  ~ = 0 (5.42) 

But a direct calculation of the left-hand side of (5.42) using the definitions 
of r  ~ and p shows that (5.42) does indeed hold to order one in it. [It is also 
easy to see from (5.35) and (5.36) that (5.42) is a consistency condition for 
solvability.] Hence, if ~J~(m) satisfies (5.39), Eqs. (5.35), (5.36) are satisfied 
automatically. 
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The next step is to solve (5.37), (5.39) for ~,  h ~, k ~ as functions of 
p, p u, and their spatial derivatives. This step would involve a computation 
of a four-parameter family of solutions with the additional computation of 
an approximate solution (similar to an approximate Maxwellian) for 0 ~< 
P - Ps <~ const �9 (/t) ". Enforcement of the requirement that the approximate 
Maxwellian m yield the macroscopic density and momenta (5.15)-(5.18) 
requires that w makes no contribution to these macroscopic quantities: 

L c~[k ~ + (2 cosh dt + 2 cosh d2 + 2 cosh d3) h ~ 

+(2llsinhdl+212sinhdz+213sinhd3)g~]=O (5.43) 

sinh d, L h~ + l~(cosh d,) L g~=0, i=  1, 2, 3 (5.44) 
o t = l  : x = l  

For example, if the four free parameters were h t, /~, l,_, 13, then 
(5.43)-(5.44) would provide a system of four nonhomogeneous linear equa- 
tions to determine their values. For the purposes of this paper we do not 
attempt this rather tedious algebraic computation, but skip to the 
immediate consequence of the Chapman-Enskog expansion. That is the 
observation that substitution of the Chapman-Enskog expansion (5.14) 
[which is formally valid under assumption (5.34)] into the macroscopic 
balance laws (5.5)-(5.8) yield the approximate (i.e., viscous compressible 
Navier-Stokes-like) system of balance laws for mass and momentum: 

-~Pt + div(p u) =0 (5.45) 

O(pu)+O L m?+m~ O(/t) (5.46) 
Ot Ox 

O(pv)ot +-~y~O ~=,~_m~+m] O(/t) (5.47) 

O(pw)o____~+ O_ -0 ~ m~ +m~ - O(lt) (5.48) 

where m~ =lh~(p, pu). 
The main point is that this system is formally valid when 

P -  P s <~ const. (l~)" for any a > 0, const > 0. Hence (5.45)-(5.48) are valid 
into the supersaturated metastable regime Ps < P up to a class of densities 
of size Ps+ O(Ft") in ~, where a is any positive number. As in Section 3, the 
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hydrostatic pressure can be computed on the equilibrium (u=O) 
approximate Maxwellian 

p=7 ~ ~g~(m~) (5.49) 

p = 2  ~ g~(m~) (5.50) 

Since g~ is monotone increasing in m~, we see that g, p are monotone 
increasing and hence p is monotone increasing in p. Unlike the analytic 
case in Section 3 where 0 <~p <~Ps, the definition ofg~(m~) suggests loss of 
analyticity at p =Ps ,  i.e., m~= Zs. Notice that, of course, the equation of 
state into the metastable regime is an extension of the equation of state 
already given for 0 <~ p <<, Ps. Thus we have recovered Fig. 1. The use of a 
discrete-velocity model limits the ability to find a true equation of state 
independent of u. Hopefully this is balanced by the conceptual simplicity of 
the ideas. 

As noted earlier, (5.34) coupled with (5.45)-(5.48) suggests quite nicely 
the qualitative nature of the fluid dynamical limit it ~ 0 + .  That is, as 
I t - - ,O+, the domain of validity of the expansion (5.34) collapses to 
P -  Ps <~ 0 and we can only recover the inviscid conservation laws of mass 
and momentum in the stable subsaturated regime. The model thus implies 
that inviscid gas dynamics is not appropriate for mixed unsaturated and 
supersaturated flow. Classical inviscid shocks between unsaturated and 
supersaturated phases are impossible and viscous diffuse waves are the 
appropriate mechanism. 

APPENDIX A. COMPUTATION OF MAXWELLIANS 

We compute the Maxwellians as follows: On a Maxwellian we must 
have J~_ t - J~ = 0, 2 ~< 0c, and 0 = - J~ - Z ~  1 J~, I ;  = 0, 1 ~< ~, combined 
with the constraint of the state being an elastic Maxwellian. These 
equalities of course imply I ;  = 0, J~ = 0, 1 ~< ~. Now substitute the known 
form of an elastic Maxwellian (2.10) into this set of equations. We find that 
the equation I ;  = 0, 2 ~< e, implies 

_ C ~ - I C  I - n~ (  C JSca ~ + b ~ + (6 - 3J~)  as_ 1 

+�89 2<<.o~ (A.1) 
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and that J~ = 0, 1 ~< ~, implies 

S c a~,n~ C 1 + Sc ( 1 - 6~, l ) C'a~,nlo + (6 - 36~, t ) a~ C ' C  i 

C a . +  I S c  0 a +  I - b ~ +  l - b ~ + l n  o =0 ,  1 ~<7 (A.2) 

where S ~ - 2  cosh c, + 2  cosh c2+2 cosh c3. Since Sr is arbitrary, we see 
that 

- n ~ C ~ a : , +  ~_b~+l t C ~ + l = O ,  _9~<~ (A.3) 

a. o _ C~-1 =0 ,  2~<~ (A.4) - n o b  ~ + Cl(6 - -  36~,) a~_ l 

a ~ n ~ C t + ( 1 - J ~ l ) C ~ ' a ~ n ~ - b ~ , + l C : ' + t = O ,  1~<~ (A.5) 

~+l =0,  1 < ~  (A.6) C l ( 6 -  36~1) a ~ C : ' - b ~  

where obviously (A.4), (A.6) are equivalent. 
Equations (A.3), (A.4) imply 

aa.n~C 1 1 C~a~nlo=O, 2<<.~ - n ~ C l a : ' - t  2 t-~ 

or equivalently 

- n ~ C t + C ' n ~ = O ,  2~<~ (A.7) 

St~bstitution of (A.7) into (A.4) yields 

( 6 -  3d~2) a~_, ) - - C  no=0 ,  2~<~ b ~ C ~ - I ( C I ,  :, I 

o r  

3(2-d~2)  a~_ l(CI) 2 C ~-l 
C ~= 2~<~ (A.8) 1 0 noba 

Substitution of ~ =  2 into (A.8) yields of course that 

C2 = 3 al Ci)3 ( l a.91 

On the other hand, when ~ = 1, (A.5) shows that 

a l  1 1 C 2 =~2no C (A. 10) 
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and hence consistency of (A.9), (A.10) requires 

, b 0 
(CT) - = ~ (not) 2 (A.11 ) 

Let us repeat this process. Substitute ~ = 3  into (A.8) and ct--2 into (A.5) 
and equate the two representations for C 3 making use of (A.I1). After 
some straightforward computations we see that the relation 

b2 b ~ 
~3 =/-~.o (A.12) 

must hold. If we continue in this manner, we see that we need 

bp b~ 
2~<fl (A.13) 

0 ' b/j+t ba+t 

to have a solution C ~ of (A.1), (A.2) which is independent of S. Of course 
(A. 13) can be expressed as 

b~_b / j+ l ,  2~<fl 

i.e., b/j/b~ is a positive constant independent of ft. For  convenience we 
chose this constant to be 1/3 so that we have 3bp=b~ for all ft. Equation 
(A.I1) then implies the simple relation C ~ =no  ~. (Of course any other 
choice of the constant will not change our results qualitatively.) Finally, 
(A.5)-(A.8) yield 

C~=n;= Q~(noJ) ~, 1 ~<ct (A.14) 

where 

Q =2,_~_a~_lal o~>~2 
b~...b2 ' 

Q l = l  

We thus see that the Maxwellian states are given by 

n ~ = ( 1 ,  e"', e - '" ,  e'"-, e -'"-, e ''3, e - '~)  Q~(n~)  ~ (A.15) 

and hence depend on the parameters c, no ~. 
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A P P E N D I X  B. The H - T H E O R E M  

In this appendix we prove that an H-theorem holds along elastic 
Maxwellians. 

Set 

Hj-" ~ n}[In( n} "~_ ] 6 , , , , ~ /  I , H-ZHj 
a =  j = O  

Then 

_~_ + ~_~x (H ~ 0 H  a - H , ) + ~ y  _ ( H 3 - H 4 ) +  ~ . (H5 - H6) 

it I~ In 
�9 =t j=o Q.(zs )  ~] 

Along an elastic Maxwellian 

n ~ = (17 o, C~e ''~, C~e -'~, C e -, C e -, C~e "~, C~e -~3) 

we find 

L:/~[In(Q~s,~,, 
~-=1 j = O  

-~  f~ ( ~ )  ~ : ~ ~ 
_ 6 I~ln + I o l n \ Q ~ ( z s ) ~ / j  

= (J~ - t - J~) In 

= ~ J ~ l n \ Q . + , C . C t ] +  ~ / ; I n  
~=l  ~=l  \ C ~ /  

After some direct manipulations the last expression is explicitly com- 
puted and we obtain the following result. 
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Theorem (H-Theorem). Along an elastic Maxwellian the following 
equality is satisfied: 

OH 0 0 0 
~ ---:- + ~ ([41 - 1-12) + ~o3, (1-13 - 14 . )  + g-o~_ ( [ 4 ,  - [ 4 ` )  

= _3(b2no_al(Cl)2) ln  ( b21~to "~ 

Sc (b2CZ_a ,n~Cl ) ln (  b2 C2 "~ 
ll \alnloC' J 

1 ~" (3bjT~--6a~-I  ) C1C~_1)In ( b~n~ 
It \2a~ ICIC ~-t 

= 3 C~--a ' - In~- ICl  l n \ 2 a ~ - l n ~  - I C I  

The right side is less than or equal to zero and vanishes if and only if the 
elastic Maxwellian is also an inelastic Maxwellian. 

A P P E N D I X  C. C O N S T R U C T I O N  OF A P P R O X I M A T E  
M A X W E L L I A N  STATES 

Proof of Lemma 4.3. First let us reconsider Eqs. (A.1) and (A.2). 
Equation (A.1) followed from the fact that In(n)= 0, 2 ~< ~. Now we replace 
(A.1) by the weaker requirement 

If(n) = J ( 6 - S c )  (C.1) 

for some J independent of e. Notice that at equilibrium S c = 6 and I~ = 0 
holds identically. Away from equilibrium (C.1) says that I;(n) is zero up to 
quadratic terms in c~, c2, c3. 

Equation (A.2) followed from the fact that J~(n)=0,  l~<a. Now we 
replace (A.2) by 

J~(n) = J(6 + 2Sc), 1 -%< a (C.2) 

so that (iii) J , _  ~(n)-  J , ( n ) =  0, 2 ~< a, is satisfied. 
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If we now substitute in the definitions of I~(n), J~(n) where n is an 
elastic Maxwellian, (C.1) and (C.3) become, respectively, 

-n~(  C I Sea ~ + b ~ + (6 -36~2)  a=_ I C~- IC  l 

!,, c'=+ ~c = J ( 6 - S c ) ,  2~<cc (C.3) 2t/~t + 1 ~ ~'c 

Sr n + S~( 1 - d,,1) C=a=nlo + (6 - 3d=1) a=C=C ' 

C~+l,~ -o ~+l = J ( 6 +  2S~), 1 ~<c~ (C.4) - - 6 = +  5 3 c - - D ~ +  I110 

We again use the fact that S c is arbitrary to recover an analogous 
system to (A.3)-(A.6), i.e., 

--noCla=+�89 - -J ,  2~<~ (C.5) 

a 0 - n o b = + C l ( 6 - 3 6 = 2 ) a = _ l C = - l = 6 J ,  2~<cr (C.6) 

a=naC~+(1-a=l)C=a=n~-b=+lC=+*=2J ,  1~<cr (C.7) 

Cl(6 - 3a=t) a=C= -b=+~ in o,,+1 =6J ,  1 ~<~ (C.8) 

We note that (C.6) and (C.8) are equivalent. 
Next multiply (C.5) by two and add to (C.7) to see that 

= n o C ,  a~>2 (C.9) 

Substitute this relation into (C.6) to eliminate n~ and set ~ =  2 to find 

C'- 3an(Cn)3 6JCn 
o o I ( C . l O )  

b~n 0 11062 

On the other hand, (C.7) with ~ =  1 implies 

c2 alnloCI 2J (C.11) 
b2 b2 

Since J is as y.et arbitrary, we see 

3al al(n~) 2 (C.12a) (C')2 6~ 

6C l 2 
(C.12b) 0 1 b2no b2 
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If we set b~ = 3} '2, (C.12a) tells us that C 1 =  ),no ~ , while (C. 12b) says 
that y = 1. So, as in Section 2, we take 

b~ 3bj 

and we now know that C ~ =n~ and hence from (C.9) 

n~= C ~, 1 ~<~ (C.13) 

Equation (C.11) then tells us that 

al 2J 
.o~= V (.~)-'- b--_. Ic.141 

and (C.5) gives the recursion relation 

-nonoa~+�89 o - -J ,  2~<, (C.15) 

We solve (C.15) as in Penrose~2J: divide both sides of (C.15) by 
a~Q~(n~)~+ 1 to see that 

-n~  n~ +~ J 
Q~(n~)~+ Q~+,(n~)~+ ~ - a~Q~(n~o)~+, (C.16) 

[Here we used the relation 2a~Q~=Q~+~b~+~ for 2 ~ ,  where Q, is 
defined in (2.11 ). ] 

Now sum (C.16) from two to infinity to see that 

9 c~r 1 

--n~ - -J  ~ (C.17) 
Q2(n~) 2= a t3 (n'~ ~+' 

From our assumptions on the kinetic coefficients a~, b~ of (3.1)-(3.4) 
we know that a~ > A ' >  0 and we see that 

,~. 1 1 ~ 1 

~=, a~Q,(n~)~<<'-A;~= I Q~(n~) ~ 

which converges by the ratio test for n~>Zs. So for n~>Zs, (C.17) is well 
defined, and combining (C.14), (C.16) and Q2b 2 = a~, we see that 

J("~)=  I 1 ~ 1 ? - i  ~ +  L ~Q~(;,~r+, Ic|a) 
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Finally, summing (C.16) from a to infinity, we recover the formula 

C a - -  ~ ct 1 - n o - f  (no), n ~ > z s  (C.19) 

where 

f l ( _ )  = z  
(C.20) 

i f ( z )  = Q~(z) ~ J(z) 1 z > Zs 

This proves Lemma 4.3. 

Lemma 12.1 (Penrosell'-)). (i) For each n ~ > z s ,  (C.15) defines a 
unique bounded solution ff(n~). (ii) For each fixed -, Q~f~(z)  decreases 
monotonically with ~. (iii) For fixed ~, f~(z) /z  increases monotonically with 
-, and hence i f ( z )  increases strictly monotonically with z. ( i v ) T h e  
sequenceff(z) has the upper bound f ' ( z )  ~< Q~(z)L (v) In the limit z "~ Zs, 
the sequence i f ( z )  becomes the equilibrium cluster distribution at 

z =  Zs: lim f~(z )  = Q~(zs) ~ 
.7 ".~ .7 S 

and hence by ( i i i ) , f f ( z ) >  Q~(zs)L 

T h e o r e m  12.2 (Penrosell2~). Let z be any number greater than z s. 
Then the following results hold: (i) ~* (the critical cluster size) is at most 
algebraically large in z -  Zs. (ii) All moments of the equilibrium cluster size 
distribution converge when 

Z=Zs:  ~ o~"Q=(zs)=< m (n=0,1,2 , . . . )  
~ = 1  

(iii) The quantities J*(z)  defined by J * ( z ) =  a=,Q=,z ~*+1 and J(z) defined 
by (C.18) are exponentially small in z - z  s. (iv) The ratio p*(z)/J*(z) ,  
p * ( z ) = Z ; ~ = , + ~ a Q = ( z s )  ~ is at most algebraically large in Z - Z s ;  
moreover, p*(z), being the product of p*(z) /J*(z)  (at most algebraically 
large) and J*(z) (exponentially small) is exponentially small in z - z s. 

Lemma .C.3. a~_ l Q~-i/a=Q~ > Zs for all ~, ~/> 1, and a~Q~(zs) ~ is 
monotone decreasing in ~. 

Proof. From the definition of Q~, 

b~ 2a~_lQ~_] a~_lQ~_l  
= -- (C.21) 

2a~ 2a~ Q~ a~ Q~ 
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From (3.3), (3.4) we know that  b ~ / 2 a ~ > z s ,  l i m ~ ( b ~ / 2 a ~ ) = Z s ,  and 
b,/a~ mono tone  decreasing, and so we have a~_ iQ=-~/a~Q~ > z s for all cr 
c~ >t 1. Fur thermore,  a=_ l Q~-  l(Zs) ~-  l/a= Q~(zs) ~ > 1, so that  a~ Q~(zs) ~ is 
m o n o t o n e  decreasing in ~. 

In the next group of  lemmas m denotes the state defined by (4.2), and 
S d = 2 cosh d I + 2 cosh d2 + 2 cosh d3. 

Lemma C.4. I~(m) is exponentially small in m ~ - z  s, uniformly 
in cg 1 ~<~. For  O<~ml<~zs,  l ~ ( m ) = 0 .  

Proof. For  e >/2, we know that 

I~(m) = - g~ (m~) (m~Sda~  + 3b~) + (6 - 3~2)  a~_,  g~-l(mo~) m 1 

+ �89 g~+ '(m~) S d (C.22) 

If  in addit ion 2 ~ e ~< cr - 1, and g~(m~) - :~ tm ~ - ~  ~ o,, we can use (C.1) to see 
that 

I ; ( m )  = J ( m ~ ) ( 6 - S n ) ,  2 ~< 0~ ~< ~* - 1 (C.23) 

[Not ice  that  if mo ~ ~< Zs is a Maxwellian and I ; ( m ) = 0 ,  the second part  of  
the lemma is easily obtained.]  

If  cr = cr and m~ > z s, we see that  

I o (m) = - . f~ '(m~)(m~Saa:,  + 3b~) + (6 - 3~:_,) a :  _ l . f = ' -  ~(m~) m~o 

+ { b ~ . + l Q ~ . +  - ~*+~ . i ( - s )  S .  

or by adding and subtracting �89 i S a f  : +  Ilm~) and using the definition 
off ' ( tool) ,  

I I ; * ( m )  ~--- J(rHl)( 6 --  Sd)  --~ _~b:~, + 1Sd( Q~* + I(--s) :~* + 1 _ f ~ *  + 1(171/)) 

This can be rewritten as 

i ; * ( m ) = J ( m ~ ) ( 6 _ S d ) + S a a ~ . ( Q = . ( Z s ) : +  1 _ _ _  

Since 

. :  

0~.+1 
f ~ ' + l ( m ~ ) )  

f:'* + '(m~) ~ Q~. + "ltmoJ"~* + l 

(Lemma C.1 ), we have 

[I~*(m)[ ~< S(m~)(6 - S , )  + SdJ*(mo ~) + Saa=. Q=.(m~)'* +1 
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i.e., 

IIg*(m)l ~< J(mo~)(6 - Sa) + 2SnJ*(m~) (C.24) 

Next  we consider the case ~ =er + 1. We have 

I~*+~(m)= - Q~. + ~(Zs) ~* + ' ( m ~ S d a ~ .  + l + 3b~,+~) 

+ ( 6  - 3J~. + ,.z) a~f:'*(m~o)m~o+~b~,*_ +2Q ~*+2 _(,~s) ~'*+" Sd 

or adding and subtracting 

'_1. c ,,.,'+2(m~) 

we find via (C.1) that 

I~ *+ ~(m) = J(m~)(6 - Sd) + (m~Sda~. + l + 3b~. + i) 

x ( f~ '*+l (m~) -  Q~,.+ l(Zs) ~*+l) 
I1~ K' /r ~ct*+2 + ~:~*+2~'d,~ ,~s, --f~'*+"(m~)) 

But this then yields 

l/i* + '(m)[ ~< J(m~)(6 -- Sd) + m~Saa~. + t f  ~*+ ~(m~) 

+m~Sda~*+lQ,*+l(~s)- ~*+l 

O~-+, f~ .  +2(m~) + Sda~,.+, Q:,.+ ,(Zs)=* +z + Sda=.+ ' Q=*----~+-, 

We now use Lemma  C. l ( i ) ,  (iv) to see that 

ii~.+ ~(m)l < j ( m l o ) ( 6 _ S d )  l ~* + m o S d a ~ * f  (too) 

+ m~Sd a~. Q~ . (ZsW + 
ZS 

+ Sna~*+ I Q~.*+ l(Zs) ~* +2 + Sda~,+ t Q:,* + ~(moi) ~* +2 

and then apply Lemma C.1 to obtain 

1 1 ~ *  1 II~'*J(m)l < ~ J ( m o ) ( 6 - S  d) + m o S d a ~ . f  (mo) 

mtoS,ta~Q~.(Zs)~,* +1 
-t 

ZS 

~*+1 +Sda~*~  ' l~:t*+2 
+ Sda~, Q~*(- s) 

ZS 

822/83/5-6-20 
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i.e., 

Since m ~ > z  s we then find via Lemma C.l( iv)  

IIg*§ <~J(m~)(6-Sd) ' , ~, + moSda~.  Q~.(mo) 

+ m~Sda~" Q~.(ml)  ~~ +, 

Z S 

+ Sda~.Q~.(m~)~* + ' + 
1 I o t * + l  

Sdmoa~. Q~.(mo) 

2 S 

2Sdm~ 
I I g ' + ' ( m ) l < ~ J ( m ~ ) ( 6 - - S d ) + 2 S d J * ( m ~ ) +  J*(mo ~ ) (C.25) 

ZS 

Next we consider ~ 1> ~* + 2. In this case 

I~(m) = - Q~(zs) ~ (m~Sda ~ + 3b~) + (6 - 3 ~ 2 )  a~_ , Q~_ ,(Zs) ~-  ' m~ 

Sd 
+--~ b~+ i Q~+ ,(Zs) ~+ ' 

which from the definition of  Q~ implies 

I ; ( m )  = - m~Sda ~ Q~(zs) ~ - 2a~_, Q~_ ,(Zs) ~ 

+ (6 - 3~_,) a~_~ Q~_ i(Zs) ~-  ' m t + a~Q~(zs) ~+ 1 Sd 

But from Lemma C.3, a~Q~(-s) ~ is mono tone  decreasing and hence 

I I g ( m ) l  t _ ~. <~moSda~.Q~.(-. s) + 2a~.Q~.(Zs) ~*+t 

+ 6a~. Q~.(Zs) ~* m~ + a~. Q~.(Zs) ~* + l Sd 

But m~ > zs,  so we have 

IIg(m)l ~< J*(mo~)(8 + 2Sn) 

Finally, in the 
(C.26) to obtain 

(C.26) 

case ~ = 1 ,  we use f ~ ( m ~ ) = g ' ( m ~ ) ,  1 ~<~<~*,  and 
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ot~ 

a + l  m 1 Ion(m) = - S d  ~ {6a~,m~g~'(m~)-3(l+J~,,)b~,+tg ( o)} 
~ t = l  

= - S  d ~ {6a~m~a~(zs)~-3( l  +6~)b~+,a~+~(ZsV +~} 

_Sd{6a,m~g,(m~o)_ 2 , 6b,_g (too) } 
~ * - -  I 

--Sd ~, {6a~m~g~(m~o)-3b~+~ g~+I(m~)} 
~ t = 2  

= - S  d ~, {6a~dn~Q~(zs)~'-3(1 +J~,)  b,+ i Q~+ l(Zs) "+ '} 

-- 12SdJ(m~) -- 6SdJ(m~)(o~* -- 2) 

Hence we find, using b~+lQ, + 1 = 2a~Q~, 0t/> 2, that 

Ion(m) = Sdo~*J(m ~) + 6S d ~ {a~,m~Q~,(Zs) ~'- (I +J~,)  a:,Q~,(Zsy '+' } 

or, since 0c*~> 1, 

I~(m) = Sd~*J(m ~) + 6Sd[ a~.m ~ Q~.(Zs) ~* 

( I - 6 ~ . 1 )  _ ~-+I l ~ _ a~. Q~.(-s) 6Sd -- ](mo--Zs) a~Q~,(,s) 
~ t ~ O t *  -t- l 

But since m~ >Zs, this immediately yields from (3.1) that 

II~(m)[ ~< SdOt*J(m~) + 12SdJ*(m~) + 6Sd(rn~ -- Zs) Ap*(m~o) (C.27) 

If we now apply Theorem C.2 to estimates (C.24)-(C.27}, the lemma 
is proven. 

L e m m a  C.5. J~_l(m)-Y~(m) is exponentially small in m ~ - z  s, 
uniformly in 0~, 2~<~ For O<~m~<~Zs, J~(m)=0. 

Proof. We know that 

-~/~l I -- J~(m) = S.(2-~.~) a~g or 

- - b ~ + l g ~ + l S d - - 3 b ~ + l  g ~ + l  

Since g ( 7 o ) = f ~ ( m ~ )  for l~<oc~<0t*, we know from (4.1) that 
J~(m)=J(mlo)(6+2Sd) for l~<~<0t*-- l ,  where J is defined by (C.18). 
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Also notice that  when 0 <~ m~ <~ Zs, m is a Maxwel l i an  and the second par t  
of  the l emma is proven.  F o r  mo ~ > zs  we then tr ivial ly have 

J=_ i ( m ) -  J~(m) = 0, 1 ~<cr162 1 (C.28) 

When  ~r = ~* and mo ~ > z s, 

J~- - i (m) - J~ . (m)  = J(mol )(6 + 2S  d) - 2Sda = �9 Q=.(Zs) ~" + 1 

- 6a~. Q~.(Zs) =* m~ 

+b=.+tQ~ .+ l ( z s )  ~*+l Sd+3b=.+lQ=.+l (Zs )  ~'+l 

We now use Q~+lb=+l =2Q=a~, ar to see 

J=. _ i (m) - J= . (m)  = J(mol )(6 + 2S a) - 2Salad. Q=.(Zs) ~* (m~ - z s) 

- 6a=. Q=.(Zs) ~* (m~ - zs)  

and  hence 

IJ~. _ l (m) - J~ . (m)l  ~ J(m~)(6 + 2Sa) 

+ ( m ~ - - l ) ( 6 + 2 S d ) J * ( m ~ )  (C.29) 
\ Zs  

Next  when ar >/cr + 1 we find 

J=_ t(m) - J~(m) = - 2Sda ~_ = Q= _ l(Zs) ~- l (m I _ Zs) 

- 6 a = _ l  Q ~ , - l ( Z s )  = - i ( m ~  - z s) 

+ 2Sda= Q~(zs) = ( m ~ -  Zs) 

+ 6a=Q=(zs) ~ (m~ - Zs) 

i.e., 

]J=_ =(m) - J=(m)] ~< (2S d + 6)(m l -  zs)(a=_ l Q=- l(zs) =- i + a=Q=(zs)=) 

and by L e m m a  C.3 

, J = _ , ( m ) - - J = ( m ) , < ~ 4 ( S d + 3 ) ( ~ - - l ) J * ( m l ) ,  cr162 + 1 (C.30) 

Est imates  (C.28)- (C.30)  and  Theorem C.2 prove  the lemma.  

L e m m a  C.6 .  J l ( m )  + ~=~=l J~,(m) is exponent ia l ly  small  in m ~ - Z s .  
F o r  0 ~< mo l ~< z s, J l ( m )  + Z =~'~= 1 J=(m) = 0. 
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Proof. Since m is a Maxwellian when 0 <~ m~ <~ Zs, the second part 
of the lemma is trivial. To prove the first part, we note that J=(m)= 
ItJ(m~)(6+2Sd), 1 ~ * - - 1 ,  m~>zs ,  so that 

J d m ) +  ~ J~(m)=o~*(6+2Sd)j(mt)+J~, ,(m) 
x = l  

+2  ~ {2Sda~a~(zs)~m~ 
~ . =  Or* q- l 

+ 6a~ Q~(zsff m~ - b~ + i Q~+ l(Zsff + l Sd 

-3b~+lQ~+l(Zs) ~+l} 

= ~*(6 + 2Sd) J(m~) + J, .(m) 

+(6  + 2Sd)(m~--Zs) y" a~Q~(zs) ~ 

We now use (3.1) to obtain 

Jl(m) + ~ J~(m) ~< ~*(6 + 2Sd) J(m~) 
~ t = l  

+ J=,(m) + (6 + 2S d) A(m~ - Zs) p*(m~) 

But since 

J~.(m) = (6 + 2S d) a~. Q~.(Zs) ~* m~ - b ~ .  + ,(S d + 3) Q~. + l(Zs) ~'+ l 

we see that 

/ m  l_ \ 

�9 , Z  s / 

Hence 

[Jl(m)+ ~, J~(m)'<~o~*(6+2Sd)J(m~)+(6+2Xa)(m-~~ 
2 = 1  Z 

+ (6 + 2S d) A(m~ - =s) p*(m~) (C.31) 

Now use Theorem C.2 and the lemma is proven. 

Inspection of Lemmas C.4-C.6 shows that the relevant quantities 
given are exponentially small in m ~ - z s .  The definition of approximate 
Maxwellian was given independently of its structure, i.e., only in terms of 
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the macroscopic perturbation p ( n ) -  Ps. The next lemma shows that for m, 
our candidate for an approximate Maxwellian given by (4.2), the two 
perturbations are equivalent. 

L e m m a  C.7. (a) For  O<~m~<~zs, we have the estimate 

Zs - -  mlo <<, Ps - -  p(m) ~< const �9 (Zs - -  m ~ )  

while (b) for z s < m  ~, we have the bounds 

7 
mo~- Zs ~ p(m)-  ps ~< ~ (m~-- Zs)(Oc*) 3 J(m~) 

Proof. (a) I f 0 ~ m ~ < z  s, 

p s - p ( m ) = ( 1  + 2  cosh c I + 2  cosh c 2 + 2 c o s h  c3) 

x ~. ~Q~((zJ-(mo') ~) 

<~7 ~ ocQ~(z s -  l m o ) ( z ~ - l  - ~-~ ~-z  s mo+..-+(m') ~-~) 
0 r  

<~ 7 ~. or 
a = l  

<~ 7 Z s - m ~  ~ 0r . (zs-mJo) 
Z S  ~ =  I 

by Theorem C.2(ii). On the other hand, since 

P s -  p(m) = ( 1 + 2 cosh Cl + 2 cosh c2 + 2 cosh c3) 

• ocQ.( ( -s ) : - (mo) l  ) 
or 

where all the terms in the sum are nonnegative, we can retain only the first 
terms to see p s - p ( m )  >>. (zs-m~) .  

(b) I f z s < m o  1, 

p(m) - Ps-- ( 1 + 2 cosh c~ + 2 cosh c2 + 2 cosh c3) 

02 

• ~. oc(f~(m~) - Q,(zs) ~) 
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so again, since the terms in the series are nonnegative, we can use only the 
first term to see that p ( m ) -  Ps >1 m ~ -  Zs. To obtain the bound from above 
we use the estimate f=(mo 1) ~< Q=(mJo) ~ of Lemma CA(iv) to find 

ct* 

p ( m ) - p s < ~  7 ~, ~a=(rn~- Zs)((m~o) ~- '  
= = 1  

+ -  /m~=-2  + -'s~ o, ""  + z ~  -1) 
/ or* 

Y. + . . .  + 

"~S ~ = 1  

<. 7 m~ ~ z s Z ~2Q=(m~) ~+ ' 
Z~ == I 

Z-s = = i aa 
m I - - z  

<~ 7 ~ (cx*) 3 J*(mo I ) 

via (3.1) and definition of J*(m~). The lemma is proven. 

Proof of  Theorem 4.4. Lemma C.7 and the fact that c~* is at most 
algebraically large as m~ > Zs and J*(m~) is exponentially small as m~ "~ zs 
shows that ]m~-zs[  <~ I p ( m ) - P s i  and I p ( m ) - p s l  ~<const. Im~-zsl for 
mo ~ sufficiently close to Zs. Hence, if a quantity is exponentially small with 
respect to I rn~-zs l ,  it is exponentially small with respect to I p ( m ) - P s l .  
Now use Lemmas C.4-C.6 and the theorem is proven. 
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